
EMGU CV 
Prof. Gordon Stein

Spring 2018

Lawrence Technological University
Computer Science 

Robofest



Creating the Project

■ In Visual Studio, create a 
new Windows Forms 
Application

■ (Emgu works with WPF and 
Universal as well, but this 
tutorial will use WinForms)



Adding Emgu

■ In the Solution Explorer, right click on 
References and choose “Manage 
NuGet Packages…”

■ If this option is not available, NuGet
will need to be installed with the 
Visual Studio installer



Adding Emgu

■ Click “Browse” and type “Emgu” 
into the search bar

■ Click on “EMGU.CV” and then Click 
the “Install” button



Adding Emgu

■ Two windows should pop up 
after choosing to install it

■ Click OK in the “Review 
Changes” window and “I 
Accept” in the “License 
Acceptance” window

■ Emgu is now installed!



Testing Emgu

■ In the Form (GUI) that was 
automatically created with the 
project, add a PictureBox

■ For a real project, it is 
recommended to give your 
GUI components names, but 
to simplify the example we will 
leave the name the default 
“pictureBox1”



Testing Emgu

■ Double click on the Form’s background to create a 
Load event for the Form

■ In this example, we will be connecting to the 
webcam and displaying its image on the PictureBox



Testing Emgu

■ In the class itself (not inside any methods) we need to add 
two variables

■ The first is the VideoCapture to get the stream from the 
webcam

■ The second is a Thread we’ll use to update the image
■ We need to use a thread so we can process images in the 

background to avoid freezing up the GUI
private VideoCapture _capture;
private Thread _captureThread;



Testing Emgu
■ In the Form1_Load method, add the following code
■ The first line creates the capture with the default 

camera
■ The VideoCapture constructor can take a parameter to 

change the camera if it is not using the correct one
■ The other two lines set up and start a thread running a 

function we will create next
_capture = new VideoCapture();
_captureThread = new Thread(DisplayWebcam);
_captureThread.Start();



Testing Emgu

■ Finally, we must create the DisplayWebcam method:
private void DisplayWebcam()
{

while (_capture.IsOpened)
{

Mat frame = _capture.QueryFrame();
CvInvoke.Resize(frame, frame, pictureBox1.Size);
pictureBox1.Image = frame.Bitmap;

}
}



Testing Emgu

■ This code will run in a loop as long as the webcam is 
being captured

■ Each iteration it requests a frame from the camera, 
resizes it to the Size of the PictureBox (storing the 
resized version in the same variable), and gives the 
image to the PictureBox to display



Testing Emgu

■ If you run this code, it should turn on your webcam 
and display its image in the PictureBox

■ Congratulations, you are now ready to start working 
with computer vision!



One More Thing

■ If you close the window for this program, the webcam 
doesn’t turn off automatically! (Stopping it through 
Visual Studio or Task Manager will shut it off)

■ This is because the Thread is still running in the 
background

■ To stop it when we close the window, we need to add an 
event handler to the Form’s FormClosing/FormClosed
event (either one) with the following code to end the 
Thread: 

_captureThread.Abort();



Storing an Image

■ Images can be stored in two different types:
– The Mat type
– The Image type

■ While it seems a little counterintuitive, the Mat type 
is the newer one
– Converting between the two is simple though
– We’ll end up using the Image type anyways



Creating a Mat
■ A Mat that will store the output from something else:

■ A blank Mat with a known size and color type:

■ From a file:

Mat mat = new Mat(200, 400, DepthType.Cv8U, 3);

Mat mat = new Mat();

Width and 
Height 8-bits per 

color

3 channels
(for RGB)

Mat mat = CvInvoke.Imread("img.jpg", ImreadModes.AnyColor);



Converting Between Mat and Image

■ Mat to Image:

■ Image to Mat:

Image<Bgr, Byte> img = mat.ToImage<Bgr, Byte>();

Mat mat2 = img.Mat;



Color Spaces

■ You may know about RGB
– Red, Green, Blue

■ That Image example used BGR
■ This just changes the order the colors are stored in



Color Spaces

■ Emgu also supports:
– Grayscale (no color)
– BGRA (BGR with alpha for transparency)
– HLS (Hue, Lightness, Saturation)
– HSV (Hue, Saturation, Value)
– Lab, Luv, XYZ (Perceptual color spaces)
– YCbCr (Designed to be more efficient)



Color Spaces

■ The number of bits per color is not as important
■ 8-bit is enough for each color to get “true color”

– Our displays and cameras probably won’t show 
any more than that



Converting to Grayscale

■ With an Image:

■ Going from Mat to Image:

Image<Gray, Byte> img2 = img.Convert<Gray, Byte>();

Image<Gray, Byte> img = mat.ToImage<Gray, Byte>();



Accessing Pixels

■ With an Image, we can use it like an array to get the 
color at a specific location

■ Works for read and write:

Gray pixel = img[1, 5];

img[1, 5] = new Gray(255);



Accessing Pixels

■ That method can be slow
■ Directly accessing the data of the image is faster:

img.Data[1, 5, 0] = 255;

byte pixel = img.Data[1, 5, 0];

Third index is the 
channel (color)



A related trick

■ You can get one channel by using an image with 
multiple channels (BGR, HSV, etc) like it’s a 1-D 
array

■ You get a grayscale image out of that:

Image<Gray, Byte> blues = imgBgr[0];



Thresholding

■ A binary threshold operation will take all 
pixels above a certain value and make 
them the same value, and everything 
else set to 0 (black)

■ There are other types as well

img = img.ThresholdBinary(new Gray(100), new Gray(255));



Counting White Pixels

■ Two ways to do it
■ The first way would be to loop through the image:

int whiteCount = 0;
for (int x = 0; x < img.Width; x++)
{

for (int y = 0; y < img.Height; y++)
{

if (img.Data[y,x,0] == 255)
whiteCount++;

}
}



Counting White Pixels

■ There’s an easier way (although you may find that 
you need to loop through the image for some tasks)

■ Assuming a thresholded image:

img.CountNonzero()[0]



Modifying Labels

■ If you just try to change a Label’s text (and some 
other properties) from a Thread, it’ll throw an 
exception!

■ To fix this, you need to use the Invoke method to 
interact with some parts of the GUI

Invoke(new Action(() => label1.Text = "Hello"));

Your code here



Modifying Labels

■ Or for multiple lines at once:

Invoke(new Action(() =>
{

label1.Text = "Hello";
label2.Text = "World";

}));



What is Line Following?

■ Path on ground
– Path may have gaps or branches

■ Robot follows it to the end/in a loop



Line Following Without Vision

■ With one sensor, the robot can 
aim to keep the sensor on one 
side of the line

■ If the sensor is not on the line, 
turn left/right, if it is on the 
line, turn the opposite way
– Zigzags along the line

■ A PID controller can improve it



Line Following Without Vision

■ IR sensors pick up the 
dark/light regions on the 
ground

■ With two sensors, turn left if 
line is under left sensor, turn 
right if line is under right 
sensor



Line Following Without Vision

■ With more sensors, the robot can better 
judge how far off from the line it is

■ All of these approaches will have a few 
natural limitations:
– Limited resolution
– Can’t see beyond the front of the 

robot
– Doesn’t handle branches or gaps well



Line Following With Vision

■ A vision based approach has 
advantages:
– Can see ahead (past gaps and 

branches)
– Better resolution (know exactly 

how far to turn)
■ Disadvantages:

– Requires more powerful 
processor



Line Following With Vision

■ Simple approach is very similar to the two sensor 
design:
– Apply threshold to find line
– Look at thirds of image, determine if left/right one 

has the most white pixels
– Turn in that direction

■ Good for robots like our L2Bots that can’t steer precisely



Code Example (finding left third)

int leftWhiteCount = 0;
for (int x = 0; x < img.Width / 3; x++)
{

for (int y = 0; y < img.Height; y++)
{

if (img.Data[y,x,0] == 255)
leftWhiteCount++;

}
}



Code Example (Alternative method)

We’re setting a “Region of Interest”, which tells Emgu we only want it to consider 
a portion of the image.

img.ROI = new Rectangle(0, 0, img.Width / 3, img.Height);
leftWhiteCount = img.CountNonzero()[0];
img.ROI = Rectangle.Empty; // Reset ROI

img.ROI = new Rectangle(img.Width / 3, 0, img.Width / 3, img.Height);
centerWhiteCount = img.CountNonzero()[0];
img.ROI = Rectangle.Empty; // Reset ROI

img.ROI = new Rectangle(2 * img.Width / 3, 0, img.Width / 3, img.Height);
rightWhiteCount = img.CountNonzero()[0];
img.ROI = Rectangle.Empty; // Reset ROI



Line Following With Vision

■ Another approach:
– Apply Thresholding
– Find average position of white pixels
– Steer in that direction

■ Good for robots that can give a precise turning 
speed

■ Used in CS IGVC robot demo at LTU



Line Following With Vision

■ More complex approach:
– Apply Thresholding 
– Detect Lines/Curves in Image
– Use angle of line from vertical to steer



Threshold Values

■ You’ve been using a value set by the user for the 
threshold

■ If the lighting changes, you may need to change it
■ There are other ways you can try
■ For example, you know it will always be brighter than 

the average pixel, so that value could be your 
threshold

img.GetAverage()



Serial Communication

■ Send bits one at a time over a wire
■ Useful for communicating with many 

simply devices
■ Easy to implement on a 

microcontroller



SerialPort Class

■ In C#, we use the SerialPort Class to represent a 
port on the computer used for Serial 
communications, and Send/Receive using it



Setting up a SerialPort

SerialPort _serialPort = new SerialPort("COM4", 2400);

Serial port to connect to
(will likely be different)

Baud Rate (must be 
compatible with other side)

_serialPort.DataBits = 8;
_serialPort.Parity = Parity.None;
_serialPort.StopBits = StopBits.Two;
_serialPort.Open();

Settings for port (these 
will be what we use)

Get port ready for 
communication



Communicating over a SerialPort

■ The Write method sends an array of bytes over the 
port

■ The Read method (we won’t use it in this class) gets 
input and puts it into an array

■ We also can Close the port, which well need to do 
like how we had to Abort the Thread if we want our 
program to end when we close the window



LoCoMoCo

■ The motor controller we’ll be using
■ The LOw COst MOtor COntroller
■ H-Bridge can make two motors go in two directions
■ Communicates over serial



LoCoMoCo Commands

■ There are four commands that can be sent to each 
motor:

const byte STOP = 0x7F;
const byte FLOAT = 0x0F;
const byte FORWARD = 0x6f;
const byte BACKWARD = 0x5F;



LoCoMoCo Commands

■ The commands for each motor are put into an array 
and sent to the controller

byte left = FORWARD;
byte right = BACKWARD;

byte[] buffer = { 0x01, left, right };
_serialPort.Write(buffer, 0, 3);



Color Detection
■ Easiest way to detect colors is an HSV image
■ HSV:

– Hue: What color? (0 to 180)
– Saturation: How intense is the color? (0 to 255)
– Value: How bright is the color? (0 to 255)



Converting to HSV

■ It just needs the color type to be specified as Hsv:

Image<Hsv, byte> hsvImage = img.Convert<Hsv, byte>();



Counting Pixels of a Color

■ With an HSV image, we can use the InRange method 
to look for pixels where each component is in a 
specific range

■ To look for red pixels (with at least 150 in saturation 
and 100 in value): 

int redpixels = hsvImage.InRange(new Hsv(0, 150, 100),
new Hsv(25, 255, 255)).CountNonzero()[0];

Note that finding red pixels may require searching values around 180 as well



Noise in images

■ Sometimes a threshold alone does not work 
■ You’ll divide the image up correctly, but something in 

the background is ruining the image



Dilation and Erosion

■ Two actions that act on the 
pixels in the image using a 
“kernel” (a set of neighboring 
pixels and values for them)

■ Each one expands white or black 
regions:
– Dilate: if one of the 

neighbors is a white pixel, 
this pixel is white

– Erode: if one of the 
neighbors is a black pixel, 
the pixel is black

img = img.Dilate(3);img = img.Erode(3);



Open and Close
■ There are two combinations of 

dilations and erosions

■ Opening: an erosion and then a 
dilation, useful for removing 
background noise

■ Closing: a dilation followed by an 
erosion, fills in holes in

img = img.Erode(1).Dilate(1);

img = img.Dilate(1).Erode(1);



Blurring images

■ We have multiple types of blur/smoothing in 
EmguCV:
– Average (Mean)
– Bilateral
– Gaussian
– Median



Gaussian Blur

■ Each pixel is a sum of fractions of 
each pixel in its neighborhood

■ Very fast, but does not preserve 
sharp edges well



Median Blur

■ Also a good way to remove noise
■ Each pixel becomes the median of its surrounding 

pixels

img = img.SmoothMedian(3);


	Emgu CV 
	Creating the Project
	Adding Emgu
	Adding Emgu
	Adding Emgu
	Testing Emgu
	Testing Emgu
	Testing Emgu
	Testing Emgu
	Testing Emgu
	Testing Emgu
	Testing Emgu
	One More Thing
	Storing an Image
	Creating a Mat
	Converting Between Mat and Image
	Color Spaces
	Color Spaces
	Color Spaces
	Converting to Grayscale
	Accessing Pixels
	Accessing Pixels
	A related trick
	Thresholding
	Counting White Pixels
	Counting White Pixels
	Modifying Labels
	Modifying Labels
	What is Line Following?
	Line Following Without Vision
	Line Following Without Vision
	Line Following Without Vision
	Line Following With Vision
	Line Following With Vision
	Code Example (finding left third)
	Code Example (Alternative method)
	Line Following With Vision
	Line Following With Vision
	Threshold Values
	Serial Communication
	SerialPort Class
	Setting up a SerialPort
	Communicating over a SerialPort
	LoCoMoCo
	LoCoMoCo Commands
	LoCoMoCo Commands
	Color Detection
	Converting to HSV
	Counting Pixels of a Color
	Noise in images
	Dilation and Erosion
	Open and Close
	Blurring images
	Gaussian Blur
	Median Blur

